Gather
Design
Version 1.0

Ryan Hill, Calvin Keats, Noah Williams

Title Page

Table of Contents
Change History
Introduction
Project Description

Requirements

Functional
Nonfunctional

UML Diagrams

Use Case Diagrams
Class Diagram
Activity Diagrams
Sequence Diagrams

N o O Ul RN w N

Change History

Version 0.1 -- Initial Documentation
Version 1.0 -- Initial Presented Version

Introduction

Motivation/Purpose

Gather is being designed to break the isolating mould of current social networking by actually
enabling users to socialize with new people. In doing so we hope that, with appropriate usage,
Gather will be able to help people acclimate to a new place or even branch-out socially by
providing them with a tool to find and interact with like-minded people

Scope

Gather will utilize several different features of the android system. To start, we will use the
Google Maps API in order to show events based on location data. Event data, such as the
description, location, time, etc. will be held in a database. Optionally, users will be able to
create user profiles which will also be held on our database.

Goals

Our current goals for Gather are the following:
e Create a sleek, usable application that allows users to intuitively interact within our
system
Provide users with a graphical representation of events using the Google Maps API
Provide users who opt-in to have a profile in Gather with extended functionality and
customisability
o Eventually provide Facebook/Google+ integration

Key definitions

Gather: Our application for which this documentation is written
MTBF: Mean time between failures
User:
o When in Use-Case: A user of our application who has created a personal
profile
o General: A user of our application
e AnonUser: A user of our application who has not created a personal profile

Project Description

For Gather to be successful, we will design and implement several different key features.
These features include the essential functionality:

e Creating Events

e Managing Events

e Viewing Events

Additional functionality that does not need to be included in an initial release of Gather would
be as follows:

e Ability to create and manage a user profile

e Ability to integrate profile with existing social networks

e Integration into a website so mobile-viewing is not mandatory

In addition to the front-end functionality listed above, there are several features on the
backend that must be considered:

e Database to store event and user information

e Web server to handle website functionality

Functional Requirements

Allow user to create events
Allow user to modify event details
Title
Category
Location
Time
Description
Target number of people
Age requirements
o Picture
Allow user to browse events via menu
o General browse
o Category browse
o Time browse
Allow user to browse events via map
Allow user to search for events via search bar
Allow user to see event details
Allow users to interact with events
o Comment
o Claim to be attending
o Opt-in to be notified of event comments
Notify users when an event they claim to be attending has changes in its details
Notify event creator when a user claims that they will attend the creator’s event
Notify event creator when a user comments on their event
Allow user to see events they have created or claim to be attending

O O O O O O

Nonfunctional Requirements

Service Availability/Reliability
o MTBF
Security
o Secure transfer of login credentials
Usability
o Clean Interface
o Non Resource-Intensive
Scalability
o Keeping up with a growing user base

Use Case Diagrams

User Use Case Diagram

=< Extend==>

<< Extend>>

User

The user use-case diagram has one actor, the “User”. The User can browse events
and extend browsing functionality by filtering the events they see by category, time, or
location. Alternatively, they can use the search functionality to search for keywords in the
event’s description and title.

While browsing events, the user can view a single event to get more details. From the
single event view page, the user can toggle notification for the event, claim that they will
attend that event, or post comments on that event’s page. The user can also manage any
events they have created.

The user can log in to a profile (granted that they have created one) and their profile
information as well.

AnonUser Use Case Diagram

c<Extend=> .

-

.-° <<Extend>> @ by Category
<< Extend>>
_________________ Browse by Time
<< Extend»>

AnonUser

Create Profile

The AnonUser (short for Anonymous User) use case has one actor, that of the
AnonUser. The AnonUser has all of the same functionality as the “User” diagram above, with
the exception of the ability to login and manage a profile. The AnonUser also has one action
that the “User” lacks, that being the ability to create a profile.

10

Creator Use Case Diagram

Create Event

The “Creator” diagram has one actor, the “Creator”. The Creator is a User or an
Anonymous user that chooses to create a new event. This is the first action of the “Creator”
actor. In addition, the creator can modify any event they have created. The modifications that
a creator can make to their events are to update the event information or delete the event
completely.

Creator

11

Class Diagram

Evant
-EventlD : string
iz -Creator: string
-UserlD . sting =+ Title : string
SR 8y <<instantiate>> [*Category : sting
-Picture : byte[] +Time : sting
-CumrentEvents : Stl'il'l;] "DESCI’iD‘ﬁCl'i : m
-Notify Events : string[] -Desired Attendence : int
+User(UsarName : string, Picture : byte []) : UsedD +NumAttending : int
-CreateEvent(Title : string, Category : string, Time : string, Coordinates : float [} : Event +Coondinates : float]]
-ModifyEvent(Title . string = Application Class Diagram.Event.Title, Category : sting = Application Class Diagram.Event.Category, +Comments . string]]
Time : string = Apyplication Class Diagram. Event. Time, Description : string = Application Class Diagram. Event. Description, +GetCreator() : UserlD
DesiredAttendence : int = Application Class Diagram.Event. DesiredAttendence, Coordinates : float [] = Application Class Diagram.
Event. Coordinates) : void
-DeleteEventEventID : string) : vioid
-ChangePicture|UserlD : string, Picture : byte []) : woid
-LeaveComment{EventlD : sting, CommentText : string) : EventComment | ___._.2
-DeleteComment(Event|D : sting, Comment|D : string) : void ceinstantiatoss EventComment
-AttendEventEvent|D ! string) : EventID -AssocEvent|D : string
-WithdrawEvent(Event|D : string) : EventlD -Comment|D : string
-MotifyMe(EventD : string) : woid -UserlD . string
-UnNotifyMe(Event|D : string) : void +CommentText : string
+GetCreator() : UserlD

The class diagram to Gather is rather simple. The main class for our application, the
User, is the most complicated. The User has a UserlD, which will be a global unique identifier
(GUID). In addition, the user will have a collection of EventlDs which reference the events
they have claimed they will attend. Another collection of EventIDs will represent which events
the User wants to receive notifications from. If a user chooses to create a profile, the Picture
and UserName attributes become available, which respectively are a byte array representing
an image and a unique (via database query) string. The User class also has several
operations. The User has a simple User() initialization operation, as well as functions to
Create, Modify, and Delete events. “Create Event” only requires that the user specify a title,
category, time, and place. “Modify Event” has only optional parameters, and the parameters
that are not entered will simply default to whatever they were already set to for the event. A
user who has an account has the ability to use the ChangePicture() operation as well, which
changes the profile picture they use to represent themselves. Registered users can leave a
comment on an event using LeaveComment(), and can also delete comments that they have
made using DeleteComment(). Additional functionality for all users includes the ability to claim
they are attending an event using AttendEvent(), and the ability to withdraw that attendance
using WithdrawEvent(). NotifyMe() and UnNotifyMe() allow a user to indicate whether or not
they wish to receive natifications for an event, or halt notifications from that event,
respectively.

The Event class can be instantiated by a User through the CreateEvent() method. An
Event has a GUID formatted to be a string as an EventID and a string representing the UserlD
of the creator of said event with is the Creator attribute. In addition to these attributes, the
Event has several attributes used to hold information about itself, those being the Title,
Category, Time, Description, DesiredAttendence, and NumAttening all of which are
self-explanatory. The Coordinates attribute is an array of float values representing the

12

longitudinal and latitudinal coordinates of the event’s location. The Event class also has an
array of strings which would be CommentIDs representing the list of comments for that event.

The EventComment class has only four attributes, those being the AssocEventID
which is the EventID of the Event that the EventComment is linked to, the CommentID which
is the indentifier of the comment itself, the UserlD which is the GUID of the user who created
the comment, and the CommentText which is the actual string content of the comment.

Both the EventComment and the Event classes have a single operation, GetCreator(),
which returns the UserID of the User who created the EventComment or the Event.

13

Activity Diagrams

Create Event

Fill out Event
Infermation
Select "Create New M ~—
Begin Event” ~ | Submit Event
i Ins Ewvent

Incomect Information

A4
: Create Event record in datahaae]

Done

The Create Event activity diagram begins when the user selects “Create New Event”
option from our application’s main page. They then fill out a form of all the information
required to make the event, and then they inspect that form to verify that it is correct. If the
user deems the information incorrect, they are returned to the form to correct their
information. If the user deems the information correct they submit the event, then the event is
created within our database and the action is complete.

14

Edit Event

Is not cwner

W
b@migate to "My EvamsH Select "Modify Event” H> Verify Ownership
Begin

Incomrect Information H' Fill out Event LF Fp——

—| Information —
Inspect Event
Correct Informaticn | Submit Event
f““‘q—

W

(Update Event record in
@< \ database

Done

The “Edit Event” activity begins when the user navigates to the “My Events” tab of our
application. They will then select the “Modify Event” option to an event they have created,
which checks whether or not they are the one who created the event. Ideally, this will always
return that they are the creator because they should not have the option to choose “Modify
Event” on an event they did not create.

Once ownership is verified, the user fills is taken to the form of information for the
event and can change it as they see fit. The user then they inspect that form to verify that it is
correct. If the user deems the information incorrect, they are returned to the form to correct
their information. If the user deems the information correct they submit the event, then the
event is updated in our database and the action is complete.

15

Delete Event

15 not cwner

W
.963«&93’;3 to "My EmHsmm “Delete Event™ H) Verify Ownership
Begin

No

[. \]/ Yes \s
Delete Event record in database
_)“*

Done Verify user wants to continue with action

|5 owiner

The “Delete Event” activity begins when the user navigates to “My Events”. They will
then select the “Delete Event” option to an event they have created, which checks whether or
not they are the one who created the event. Ideally, this will always return that they are the
creator because they should not have the option to choose “Delete Event” on an event they
did not create.

Once ownership is verified, the user is prompted to verify their action. If the user
verifies their intent to delete the event, the event is deleted in our database and the action is
complete.

16

Make Profile

Fill out Profile
Information
[Select "Create Profile”] S ~ /M Correct Information
Begin J Inspect| Profile
M
Incomect Information Is i
smuse Werify Usemame isntin Use

Is not in use

@(ﬂ]reate User record in datahase]

.

Done

The “Make Profile” activity begins when an Anonymous User selects the “Create
Profile” option. They must fill out a form of data relevant to profiile creating, and then inspect
that form. If the user deems that information incorrect, they are taken back to the form. If the
user deems the information correct, they submit the profile. This then verifies that the
username they input to the form is not currently in use by another user. If the username is
currently being used, the user is taken back to the form and asked to choose a different
username. If the username is not in use, the User record is created in the database and the
action is complete.

17

Delete Profile

Mavigate to "My - -
ﬁ . Select "Delete Profile j—
I

Mo

Delete Profile record in \\L/ Yos
@Q database J)"‘

Done

Verify user wants to continue with acticn

The “Delete Profile” action occurs when a User with a profile chooses navigates to the
“My Account” page and selects the “Delete Profile” option. This simply verifies that the user
does want to delete the profile. If the user chooses not to confirm this action, they are

returned to the “My Account” page; otherwise the Profile record is deleted in the database and
the action is complete.

Daone

Begin

18

Browse Events

The “Browse Events” activity begins when the user navigates to the “Browse” tab of
our application. From this view, they are shown a list of all events within a certain proximity of
themselves. They can either choose to exit the “Browse” section from here thus terminating
the activity, select a single event to view more details, or update their results. To update their
results, the user can search events by keyword, select a new location, set a timeframe, or
select a category. All of these options can be used at once or in any combination. Once the
user has opted to filter their results by any of these methods, the events listed are updated via
a query to our database and the new listing will be shown.

If a user selects a single event to view its details, they can comment on the event or
mark themselves as attending. Once they have done either of those things they are returned
to the single event viewing page. From this page they can either close the page thus returning
to the previous list of events, or leave the “Browse” section thus terminating the activity.

19

Sequence Diagrams

User Sequence Diagrams

Browse When browsing events, a user would
press the browse button, then choose a
User App Server method of browsing.

If the user wishes to search a keyword,
they will press that button, and when
presented with a text field, enter the

Press Browse A
4

" Display Browse Menu

alt [Search By Keyword]

keyword they wish to search. The app
will then form a SQL query and retrieve
the relevant information from the

Press Search By Keywordy |
4

¢ Display Search Page

_E_nf_q_uf:y_______’_ . L database. Upon retrieval the app will
[Browse By X] then display it to the user.
Press X >

Request Filterod Events If the user wishes to browse by Category,

alt [Success] - Time, or Location, they will press the
relevant button, then the app will form the
| Dispay Resuts proper SQL query and retrieve the data
Choose Event 4 from the database. upon retrieval, the
q app will display the filtered list to the user.

" Return Filtered Events

¢ Display Event Page

Interact With Event g
4

)) If an error occurs with the database, the
Interactions consist

of commenting and user will be notified.
toggling attendance

Save Data

i

alt] [Success]

Retumn Success
Exit Event Page b

¢ Display Browse

[Failed]
Return Error
Exit Event b
‘ Display Error
T E—— ——— ————

Return Error

_

>{ Display Error

App Server

20

Delete Profile

User App Server

Press Delete Profile |
r

Request Verification

alt [Confirm]

Press Confim
r

Request Delete User’

alt] [Success]

Delete User Data :

Retun Success
Logout User b

Display Home
T wRaieay | T
" Returmn Error
Display Error
T [Rejett | [T

Press Reject 3|

Ll
, Display Home

App Server

If the user wishes to delete their profile, they will navigate to the settings menu, and
press “Delete Profile.” The app will then return a confirmation prompt and upon confirmation
will send the proper delete statement(s) to the server. After the account has been deleted the
user will be logged out and returned to the home screen.

21

AnonUser Sequence Diagrams

Create Profile

AnonUser App Server

Press Create Profile ’

‘ Display Profile Creation Page

Enter Profile Info ’

Reguest Create F’rﬁfile’

alt [Success]

‘ Retumn Success

Display Success

Display Login Page

Falled]

" Feturmn Ermor

- Display Emor

App Server

If an anonymous user wishes to create a profile, they will press the “Create Profile”
button. The app will take the user to the profile creation page where they may enter the
requesting information. Upon completion the app will send the insert (SQL) statements to the
database. After a successful insertion the user will be notified and taken to the login screen.

If an error occurs the user will be notified.

If an anonymous user wishes to log in with a pre-existing account, they will press the

Login

AnonUser

App Server

Press Login ’

4 Display Login Page
Enter Login Info }

Check Credentials’

alt

X Display Ermor

[Success]

Display Home Page

[Failed]

‘ Retumn User Info

Retumn Ermor

App Server

22

“Login” button and be taken to the login page. After entering username and password the app

will send the credentials to the server for comparison. If a match is found the server will
return the appropriate profile information, the user will then be logged in, and taken to the

home page.

If an error occurs the user will be notified.

Creator Sequence Diagrams

Event Creation

Creator App

Server

Press Create Event ’

‘Shuw Event Creation Page

Enter Event Data
Press Submit ﬂ

Save EBEvent Data ’

alt [Success]

‘ Event Created

‘ Show Success Message

[Failed]

‘ Show Failed Message

‘Euent Creation Failed

Exit Event Creation Page D

>(Show Home Page

App

Server

23

If a user wishes to create an event, they will press “Create Event” whereupon they will
be taken to the event creation page. Here they will enter the requested event data and press
submit. The app will then send the data to the server. If the event is successfully created the

user will be notified and taken to the home page.

If an error occurs the user will be notified.

Delete Event

Creator App server

Press Delete Event ’

Send Delete Request ’

alt [Success]

Delete Data ;

‘ Retumn Success

‘ Show Success

[Failed]

4 Retumn Ermor

‘ Display Ermor

Exit Event Creation Page @
x Show Home Page

App Server

If a user wishes to delete an event they have created they will navigate to the event,
and press “Delete Event” after the user confirms this, the delete request will be sent to the
server. If successful the User will be notified and taken to the home page.

If an error occurs the user will be notified.

Update Event

Creator

App

Press Update Event

4

Server

Request Event Data’

alt [Success]
‘ Retum Data
Populate Fields
w/ Data
‘SMW Event Creation Page
Modify Data N
Press Submit ’
Save Data ’
alt [Success]
‘ Success Message
‘ Show Success
B e
‘ Retum Ermor
‘ Display Error
[T [Faiteay T
‘ Retumn Ermor
‘ Display Ermor

If a user wishes to modify an event they have created they will navigate to the event

>(Show Home Page

Exit Event Creation Page

O

App

Server

25

page and press “Update Event” The User will then be taken to the event creation page (which

will pre-populate all known fields. After the user has modified the data they wish to and
submitted, the app will update the database. If successful the user will be notified and

returned to the home screen.

If an error occurs the user will be notified.

