
 
 

1 

Gather 
Design 

Version 1.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ryan Hill, Calvin Keats, Noah Williams 
 
   



 
 

2 

 

Title Page 1 

Table of Contents 2 

Change History 3 

Introduction 4 

Project Description 5 

Requirements 6 
Functional 6 
Nonfunctional 7 

UML Diagrams 8 
Use Case Diagrams 8 
Class Diagram 11 
Activity Diagrams 13 
Sequence Diagrams 19 

 
 
 
 
 
   



 
 

3 

Change History 
 
Version 0.1 ­­ Initial Documentation 
Version 1.0 ­­ Initial Presented Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   



 
 

4 

Introduction 
 

Motivation/Purpose 

Gather is being designed to break the isolating mould of current social networking by actually 
enabling users to socialize with new people. In doing so we hope that, with appropriate usage, 
Gather will be able to help people acclimate to a new place or even branch­out socially by 
providing them with a tool to find and interact with like­minded people 

 
Scope 

Gather will utilize several different features of the android system. To start, we will use the 
Google Maps API in order to show events based on location data. Event data, such as the 
description, location, time, etc. will be held in a database. Optionally, users will be able to 
create user profiles which will also be held on our database. 

 
 

Goals 

Our current goals for Gather are the following: 
● Create a sleek, usable application that allows users to intuitively interact within our 

system 
● Provide users with a graphical representation of events using the Google Maps API 
● Provide users who opt­in to have a profile in Gather with extended functionality and 

customisability 
○ Eventually provide Facebook/Google+ integration 

 
 

Key definitions 

● Gather: Our application for which this documentation is written 
● MTBF: Mean time between failures 
● User:  

○ When in Use­Case: A user of our application who has created a personal 
profile 

○ General: A user of our application 
● AnonUser: A user of our application who has not created a personal profile 

 
 

 



 
 

5 

Project Description 
 
For Gather to be successful, we will design and implement several different key features. 
These features include the essential functionality: 

● Creating Events 
● Managing Events 
● Viewing Events 

 
Additional functionality that does not need to be included in an initial release of Gather would 
be as follows: 

● Ability to create and manage a user profile  
● Ability to integrate profile with existing social networks 
● Integration into a website so mobile­viewing is not mandatory 

 
In addition to the front­end functionality listed above, there are several features on the 
backend that must be considered: 

● Database to store event and user information 
● Web server to handle website functionality 

 
 

 
   



 
 

6 

Functional Requirements 
● Allow user to create events 
● Allow user to modify event details 

○ Title 
○ Category 
○ Location 
○ Time 
○ Description 
○ Target number of people 
○ Age requirements 
○ Picture 

● Allow user to browse events via menu 
○ General browse 
○ Category browse 
○ Time browse 

● Allow user to browse events via map 
● Allow user to search for events via search bar 
● Allow user to see event details 
● Allow users to interact with events 

○ Comment 
○ Claim to be attending 
○ Opt­in to be notified of event comments 

● Notify users when an event they claim to be attending has changes in its details 
● Notify event creator when a user claims that they will attend the creator’s event 
● Notify event creator when a user comments on their event 
● Allow user to see events they have created or claim to be attending 

 
 
 
 
 
 
 
 
 
 
 
 
   



 
 

7 

Nonfunctional Requirements 
● Service Availability/Reliability 

○ MTBF 
● Security 

○ Secure transfer of login credentials 
● Usability 

○ Clean Interface 
○ Non Resource­Intensive 

● Scalability 
○ Keeping up with a growing user base 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   



 
 

8 

Use Case Diagrams 
 
 
 

User Use Case Diagram 

 
The user use­case diagram has one actor, the “User”. The User can browse events 

and extend browsing functionality by filtering the events they see by category, time, or 
location. Alternatively, they can use the search functionality to search for keywords in the 
event’s description and title.  

While browsing events, the user can view a single event to get more details. From the 
single event view page, the user can toggle notification for the event, claim that they will 
attend that event, or post comments on that event’s page. The user can also manage any 
events they have created.  

The user can log in to a profile (granted that they have created one) and their profile 
information as well. 

 



 
 

9 

 
 
 
 
 

AnonUser Use Case Diagram

 

The AnonUser (short for Anonymous User) use case has one actor, that of the 
AnonUser. The AnonUser has all of the same functionality as the “User” diagram above, with 
the exception of the ability to login and manage a profile. The AnonUser also has one action 
that the “User” lacks, that being the ability to create a profile. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

10 

 
 

 
 

Creator Use Case Diagram 

 
The “Creator” diagram has one actor, the “Creator”. The Creator is a User or an 

Anonymous user that chooses to create a new event. This is the first action of the “Creator” 
actor. In addition, the creator can modify any event they have created. The modifications that 
a creator can make to their events are to update the event information or delete the event 
completely.   



 
 

11 

Class Diagram 

 
The class diagram to Gather is rather simple. The main class for our application, the 

User, is the most complicated. The User has a UserID, which will be a global unique identifier 
(GUID). In addition, the user will have a collection of EventIDs which reference the events 
they have claimed they will attend. Another collection of EventIDs will represent which events 
the User wants to receive notifications from. If a user chooses to create a profile, the Picture 
and UserName attributes become available, which respectively are a byte array representing 
an image and a unique (via database query) string. The User class also has several 
operations. The User has a simple User() initialization operation, as well as functions to 
Create, Modify, and Delete events. “Create Event” only requires that the user specify a title, 
category, time, and place. “Modify Event” has only optional parameters, and the parameters 
that are not entered will simply default to whatever they were already set to for the event. A 
user who has an account has the ability to use the ChangePicture() operation as well, which 
changes the profile picture they use to represent themselves. Registered users can leave a 
comment on an event using LeaveComment(), and  can also delete comments that they have 
made using DeleteComment(). Additional functionality for all users includes the ability to claim 
they are attending an event using AttendEvent(), and the ability to withdraw that attendance 
using WithdrawEvent(). NotifyMe() and UnNotifyMe() allow a user to indicate whether or not 
they wish to receive notifications for an event, or halt notifications from that event, 
respectively.  

The Event class can be instantiated by a User through the CreateEvent() method. An 
Event has a GUID formatted to be a string as an EventID and a string representing the UserID 
of the creator of said event with is the Creator attribute. In addition to these attributes, the 
Event has several attributes used to hold information about itself, those being the Title, 
Category, Time, Description, DesiredAttendence, and NumAttening all of which are 
self­explanatory. The Coordinates attribute is an array of float values representing the 



 
 

12 

longitudinal and latitudinal coordinates of the event’s location. The Event class also has an 
array of strings which would be CommentIDs representing the list of comments for that event.  

The EventComment class has only four attributes, those being the AssocEventID 
which is the EventID of the Event that the EventComment is linked to, the CommentID which 
is the indentifier of the comment itself, the UserID which is the GUID of the user who created 
the comment, and the CommentText which is the actual string content of the comment. 

Both the EventComment and the Event classes have a single operation, GetCreator(), 
which returns the UserID of the User who created the EventComment or the Event. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   



 
 

13 

 

Activity Diagrams 
 
 

Create Event 

 
The Create Event activity diagram begins when the user selects “Create New Event” 

option from our application’s main page. They then fill out a form of all the information 
required to make the event, and then they inspect that form to verify that it is correct. If the 
user deems the information incorrect, they are returned to the form to correct their 
information. If the user deems the information correct they submit the event, then the event is 
created within our database and the action is complete. 
 
 
 



 
 

14 

Edit Event 

 
The “Edit Event” activity begins when the user navigates to the “My Events” tab of our 

application. They will then select the “Modify Event” option to an event they have created, 
which checks whether or not they are the one who created the event. Ideally, this will always 
return that they are the creator because they should not have the option to choose “Modify 
Event” on an event they did not create.  

Once ownership is verified, the user fills is taken to the form of information for the 
event and can change it as they see fit. The user then they inspect that form to verify that it is 
correct. If the user deems the information incorrect, they are returned to the form to correct 
their information. If the user deems the information correct they submit the event, then the 
event is updated in our database and the action is complete. 
 
 
 
 



 
 

15 

Delete Event 

 
The “Delete Event” activity begins when the user navigates to “My Events”.  They will 

then select the “Delete Event” option to an event they have created, which checks whether or 
not they are the one who created the event.  Ideally, this will always return that they are the 
creator because they should not have the option to choose “Delete Event” on an event they 
did not create.  

Once ownership is verified, the user is prompted to verify their action. If the user 
verifies their intent to delete the event, the event is deleted in our database and the action is 
complete. 
 
 
 



 
 

16 

Make Profile 

 

The “Make Profile” activity begins when an Anonymous User selects the “Create 
Profile” option. They must fill out a form of data relevant to profiile creating, and then inspect 
that form. If the user deems that information incorrect, they are taken back to the form. If the 
user deems the information correct, they submit the profile. This then verifies that the 
username they input to the form is not currently in use by another user. If the username is 
currently being used, the user is taken back to the form and asked to choose a different 
username. If the username is not in use, the User record is created in the database and the 
action is complete. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

17 

Delete Profile 

 
 
 
 
 
 
 
 
 
 
 
 
 

The “Delete Profile” action occurs when a User with a profile chooses navigates to the 
“My Account” page and selects the “Delete Profile” option. This simply verifies that the user 
does want to delete the profile. If the user chooses not to confirm this action, they are 
returned to the “My Account” page; otherwise the Profile record is deleted in the database and 
the action is complete. 
 
 
 
 
 
 
 



 
 

18 

Browse Events 

The “Browse Events” activity begins when the user navigates to the “Browse” tab of 
our application. From this view, they are shown a list of all events within a certain proximity of 
themselves. They can either choose to exit the “Browse” section from here thus terminating 
the activity, select a single event to view more details, or update their results. To update their 
results, the user can search events by keyword, select a new location, set a timeframe, or 
select a category. All of these options can be used at once or in any combination. Once the 
user has opted to filter their results by any of these methods, the events listed are updated via 
a query to our database and the new listing will be shown.  

If a user selects a single event to view its details, they can comment on the event or 
mark themselves as attending. Once they have done either of those things they are returned 
to the single event viewing page. From this page they can either close the page thus returning 
to the previous list of events, or leave the “Browse” section thus terminating the activity.  
 
 
 
 
 
 
 
 
 
 
   



 
 

19 

Sequence Diagrams 
 

User Sequence Diagrams 
 
When browsing events, a user would 
press the browse button, then choose a 
method of browsing. 
If the user wishes to search a keyword, 
they will press that button, and when 
presented with a text field, enter the 
keyword they wish to search.  The app 
will then form a SQL query and retrieve 
the relevant information from the 
database.  Upon retrieval the app will 
then display it to the user. 
 
If the user wishes to browse by Category, 
Time, or Location, they will press the 
relevant button, then the app will form the 
proper SQL query and retrieve the data 
from the database.  upon retrieval, the 
app will display the filtered list to the user. 
 
If an error occurs with the database, the 
user will be notified. 
 
   



 
 

20 

 
If the user wishes to delete their profile, they will navigate to the settings menu, and 

press “Delete Profile.”  The app will then return a confirmation prompt and upon confirmation 
will send the proper delete statement(s) to the server.  After the account has been deleted the 
user will be logged out and returned to the home screen. 
   



 
 

21 

AnonUser Sequence Diagrams

 
If an anonymous user wishes to create a profile, they will press the “Create Profile” 

button.  The app will take the user to the profile creation page where they may enter the 
requesting information.  Upon completion the app will send the insert (SQL) statements to the 
database.  After a successful insertion the user will be notified and taken to the login screen. 
 
If an error occurs the user will be notified. 
   



 
 

22 

 
If an anonymous user wishes to log in with a pre­existing account, they will press the 

“Login” button and be taken to the login page.  After entering username and password the app 
will send the credentials to the server for comparison.  If a match is found the server will 
return the appropriate profile information, the user will then be logged in, and taken to the 
home page. 
 
If an error occurs the user will be notified. 
   



 
 

23 

Creator Sequence Diagrams 

 
If a user wishes to create an event, they will press “Create Event” whereupon they will 

be taken to the event creation page.  Here they will enter the requested event data and press 
submit.  The app will then send the data to the server.  If the event is successfully created the 
user will be notified and taken to the home page. 
 
If an error occurs the user will be notified. 
   



 
 

24 

 
If a user wishes to delete an event they have created they will navigate to the event, 

and press “Delete Event” after the user confirms this, the delete request will be sent to the 
server.  If successful the User will be notified and taken to the home page. 
 
If an error occurs the user will be notified. 
   



 
 

25 

 
If a user wishes to modify an event they have created they will navigate to the event 

page and press “Update Event” The User will then be taken to the event creation page (which 
will pre­populate all known fields.  After the user has modified the data they wish to and 
submitted, the app will update the database.  If successful the user will be notified and 
returned to the home screen. 
 
If an error occurs the user will be notified. 


